Problem 4

For the following series, write formulas for the sequences a_{n}, S_{n}, and R_{n}, and find the limits of the sequences as $n \rightarrow \infty$ (if the limits exist).

$$
\sum_{1}^{\infty} e^{-n \ln 3} \quad \text { Hint: What is } e^{-\ln 3} ?
$$

Solution

$$
\begin{aligned}
a_{n} & =e^{-n \ln 3}=e^{\ln 3^{-n}}=3^{-n}=\frac{1}{3^{n}} \\
S_{n} & =\sum_{i=1}^{n} \frac{1}{3^{i}}=\sum_{i=1}^{n}\left(\frac{1}{3}\right)^{i}=-1+\sum_{i=0}^{n}\left(\frac{1}{3}\right)^{i}=-1+\frac{1-\left(\frac{1}{3}\right)^{n+1}}{1-\left(\frac{1}{3}\right)}=\frac{1}{2}-\frac{3^{-n}}{2} \\
S & =\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{2}-\frac{3^{-n}}{2}\right)=\frac{1}{2} \\
R_{n} & =S-S_{n}=\frac{1}{2}-\left(\frac{1}{2}-\frac{3^{-n}}{2}\right)=\frac{3^{-n}}{2} \\
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{1}{3^{n}}=0 \\
\lim _{n \rightarrow \infty} R_{n} & =\lim _{n \rightarrow \infty} \frac{3^{-n}}{2}=0
\end{aligned}
$$

